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1. INTRODUCTION

The Yee scheme [7, 2] is one of the basic algorithms used in solving the time dependent
Maxwell equations. This is a second order accurate method based on central differences
in space and time and a staggered mesh. In order to construct a similar method based on
a colocated grid it is necessary to represent a central second difference as a product of
forward and backward first order differences. Rather than successively applying forward
and backward differences one can split the system and apply forward differences to some
components and backward differences to other components without accounting for char-
acteristic information. Liu [3, 1] already used this idea to construct a modification of the
Yee scheme for both Cartesian and general grids. Converting these approximations for the
system to a scalar wave equation both the schemes of Yee and Liu yield the standard sec-
ond order approximation to the wave equation. Liu already noted that the numerical wave
speed of both systems is identical. Hence, Liu concluded that his scheme is second order
accurate. However, a Taylor series analysis of the Liu scheme indicates that it is only first
order accurate in theL2 sense. Scheme II studied in the next section is a simplified version
of the Liu algorithm.

For higher accuracy we can replace the Yee scheme with a fourth order implicit scheme
for the Maxwell equations based on the same staggered mesh as the Yee scheme [8, 5].
This is presented later as Scheme III. When the equivalent scheme is derived for the scalar
second order equation it is not as compact as possible. Therefore, we attempted to find an
algorithm for the first order system that was equivalent to the most compact implicit fourth
order accurate scheme for the wave equation. This again requires using forward differences
on some equations and backward differences for other equations. The simplification of this
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scheme to two equations in one space dimension is later presented as Scheme IV. However,
Scheme IV is not fourth order accurate even though the first order system and the second
order scalar equation are seemingly equivalent.

The Maxwell equations are usually solved as a first order system rather than a second order
equation because of difficulties with inhomogeneous media and with boundary conditions.
Hence, we concentrate on the properties of the first order system.

Therefore, the purpose of this investigation is to resolve the following seeming paradox.
The wave equation may be expressed as either a scalar second order equation or a system of
first order equations. Both sets can be approximated by finite difference methods. Any finite
difference scheme for a first order system can be recast as an algorithm for a second order
scalar partial differential equation. One would expect that the order of accuracy of both ap-
proaches would be the same. It turns out, however, that this is not necessarily true. Rather, the
approximation to the first order system may be of lower order accuracy, inL2, than the appar-
ently equivalent approximation to the scalar second order equation. To resolve this apparent
paradox we study the details of the amplutude and phase errors together with the initializa-
tion of the scheme for a system of equations. The difficulties that we analyze are peculiar to
a system and it cannot be reduced to the study of a scalar first order hyperbolic equation. In
this investigation we shall analyze only the pure initial value problem. Since the Maxwell
equations, for example, are cast as a first order system we endeavor to provide pre- and
post-processing that resolves this paradox, i.e., they preserve the higher order accuracy for
the first order system. This pre/post-processing is not necessary for the scalar wave equation.

In Section 2 we examine the one dimensional problem. It is shown that this seeming
paradox affects only the amplitude of the numerical solution. The phase of both sets of
approximations is the same. We trace the source of the ambiguity to the different treatments
of the initial conditions in the two formulations. In Section 3 we show how to recover the
full accuracy for the system formulation by employing pre- and post-processing of the data.
In Section 4 we extend the results to the two dimensional case.

2. ONE DIMENSION

2.1. Systems of Equations

We first examine the concept of order of accuracy for the simplest one dimensional
system,

pt =qx

qt = px
(1)

which is equivalent to the second order equation

ptt = pxx, qtt = qxx.

We first consider the one dimensional form of the Yee scheme used in computational
electromagnetics, see [4]. We denote the numerical approximation top andq by u andv,
respectively,

Yee Scheme

un+1
j − un

j =
1t

1x

(
v

n+1/2
j+1/2 − vn+1/2

j−1/2

)
v

n+3/2
j+1/2 − vn+1/2

j+1/2 =
1t

1x

(
un+1

j+1 − un+1
j

)
.

(2)
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Each of the above equations is second order accurate in space and time and hence the system
is second order accurate. Consider the following variation of this scheme

Scheme II

un+1
j − un

j =
1t

1x

(
Vn

j − Vn
j−1

)
Vn+1

j − Vn
j =

1t

1x

(
un+1

j+1 − un+1
j

)
.

(3)

The two schemes are not that different. Indeed, if we identityVn
j = vn+1/2

j+1/2 they are identical.
Another way of seeing this is by reducing systems (2) and (3) to a second order equation
approximation of the wave equation. We get in both cases the same second order central
difference algorithm

un+1
j − 2un

j + un−1
j =

(
1t

1x

)2(
un

j+1− 2un
j + un

j−1

)
. (4)

However, since each equation in (3) is only first order accurate Scheme II is not second
order accurate! The purpose of this paper is to analyze the source of this phenomenon and
suggest ways of resolving it.

We now consider a more complicated case. Define1u= un+1− un and1v= vn+3/2−
vn+1/2 and consider [5]

Scheme III

α(1u j−1+1u j+1)+ (1− 2α)1u j = 1t

1x

(
v

n+1/2
j+1/2 − vn+1/2

j−1/2

)
α(1v j−1/2+1v j+3/2)+ (1− 2α)1v j+1/2 = 1t

1x

(
un+1

j+1 − un+1
j

)
.

(5)

Each of the steps in (5) is fourth order accurate ifα= 1
24. Reducing Scheme III to a second

order equation we obtain the following fourth order accurate scheme,

α212(u j+2+ u j−2)+ 2α(1− 2α)12(u j+1+ u j−1)+ (1− 4α + 6α2)12u j

=
(
1t

1x

)2(
un

j+1− 2un
j + un

j−1

)
. (6)

Though this is a fourth order scheme it is not compact since it uses the pointsu j+2 and
u j−2. We can achieve a compact implicit approximation to the wave equation by

β12(u j+1+ u j−1)+ (1− 2β)12u j =
(
1t

1x

)2(
un

j+1− 2un
j + un

j−1

)
. (7)

This scheme is fourth order accurate in space (and second order accurate in time) when
β = 1

12. We wish to rewrite (7) as a first order system. This can be accomplished by

Scheme IV

γ1u j+1+ (1− γ )1u j = 1t

1x

(
v

n+1/2
j+1/2 − vn+1/2

j−1/2

)
γ1v j−1/2+ (1− γ )1v j+1/2 = 1t

1x

(
un+1

j+1 − un+1
j

)
.

(8)
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We now face the same question we previously asked. Each equation in Scheme IV is first
order accurate while the system which is supposedly equivalent to (7) should be fourth
order accurate whenγ = (1±√1− 4β)/2.

2.2. Analysis

We shall only consider initial value problems in periodic domains (period= 1). We denote
the Fourier (in space) transform of the exact solution of (1) by (P, Q). Then

P(k, t) = Aexacteikt + Bexacte−ikt

Q(k, t) = Cexacteikt + Dexacte−ikt,
(9)

wherek is the Fourier variable. Here

Aexact= 1

2
(P0+ Q0), Bexact= 1

2
(P0− Q0)

Cexact= 1

2
(Q0+ P0), Dexact= 1

2
(Q0− P0).

(10)

To simplify the analysis we consider the semi-discrete approximation to (1),

ut = D+v

vt = D−u,
(11)

whereD+, D− are general finite difference operators. We Fourier transform (11) in space
to obtain

Ut = ε(θ)V
Vt = µ(θ)U.

(12)

The quantitiesε(θ) andµ(θ) are the Fourier symbols of the operatorsD+, D− in (11)
with θ = k1x. By consistency they both approximate the quantityik up to some order. The
characteristic variables are

√
µU ±√εV.

In generalε 6=µ, even to the order of the scheme, and so the system cannot be diagonalized
in physical space without using pseudo-difference operators. We will denote byλ2 the
symbol corresponding to the approximation of the spatial second derivative obtained by
λ2= εµ. This approximates−k2 up to some order.

The system (12) can be reduced to the second order equation

Utt = λ2(θ)U, Vtt = λ2(θ)V. (13)

As examples, for the schemes previously presented we have

Scheme I

ε = µ = 2i sin(θ/2)

1x

λ2 = −4 sin2(θ/2)

(1x)2
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Scheme II

ε = 1− e−i θ

1x

µ = ei θ − 1

1x

λ2 = −4 sin2(θ/2)

(1x)2

Scheme III

ε = µ = 2i sin(θ/2)

1x(1− 4α sin2(θ/2))

λ2 = − 4 sin2(θ/2)

(1x)2(1− 4α sin2(θ/2))2

α = 1

24

Scheme IV

ε = 2i sin(θ/2)

1x(γei θ + 1− γ )

µ = 2i sin(θ/2)

1x(γe−i θ + 1− γ )

λ2 = − 4 sin2(θ/2)

(1x)2(1− 2β sin2(θ/2))

γ = 1±√1− 4β

2
, β = 1

12
.

We rephrase our question in the following way. For Scheme II,ε andµ are a first
order approximation to the (spatial) first derivative(ik), whereasλ2 is a second order
approximation to the symbol of the second derivative,(−k2). Similarly, in Scheme IV,ε
andµ represent the symbols of first order approximations to the first derivative whileλ is
a fourth order approximation toik. To get more insight about the order of accuracy in the
system (12) versus the scalar second order equation (13) we examine the solutions of these
equations. Note that for all cases given aboveλ2 is negative and soλ is pure imaginary. The
general solution of the system (12) is

U (θ, t) = Aeλt + Be−λt , λ = λ(θ)
V(θ, t) = Ceλt + De−λt .

(14)

Given the initial conditions

U (θ, 0) = U0 = P0, V(θ, 0) = V0 = Q0
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we determineA, B,C, D as

A = 1

2

(
U0+

√
ε

µ
V0

)
, B = 1

2

(
U0−

√
ε

µ
V0

)

C = 1

2

(
V0+

√
µ

ε
U0

)
, D = 1

2

(
V0−

√
µ

ε
U0

)
.

(15)

Comparing this with (10) we see that (15) is a first order approximation to (10) unless
ε(θ)=µ(θ) as occurs in Schemes I and III. Hence, the amplitude of the approximation is
only first order accurate. However, sinceλ is a second order approximation toik the phase
is second order accurate.

3. RECOVERING THE AMPLITUDE AND PHASE ACCURACY

We have shown in the previous section that using one sided operators in each equation
of the system (11) can preserve the phase accuracy of the original approximation but the
amplitude is only first order accurate. To rectify this situation we preprocess the data, i.e., we
replace the given initial conditionsU0,V0 by new initial conditionsW0, Z0 to be determined.
Then (15) becomes

A = 1

2

(
W0+ ε

λ
Z0

)
, B = 1

2

(
W0− ε

λ
Z0

)

C = 1

2

(
Z0+ µ

λ
W0

)
, D = 1

2

(
Z0− µ

λ
W0

)
.

One choice forW0, Z0 is

W0 = U0, Z0 = λ

ε
V0. (16)

With this choice

A = 1

2
(U0+ V0), B = 1

2
(U0− V0)

C = λ

2ε
(V0+U0), D = λ

2ε
(V0−U0).

After preprocessingV0 we see thatA andB (i.e.,U ) are higher order accurate butC and
D (i.e.,V) are still only first order accurate. The result of solving (11) with initial conditions
(16) is

W(θ, t) = 1

2
(U0+ V0)e

λt + 1

2
(U0− V0)e

−λt

Z(θ, t) = λ

2ε

{
(V0+U0)e

λt + (U0− V0)e
−λt
}
.

(17)

Now W approximatesP with the desired order of accuracy, whileZ approximatesQ with
only first order accuracy. However, we note thatε

λ
Z is a higher order approximation ofQ.
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This suggests that we post-processZ by ε
λ
, i.e., we chooseY at the final time such that

Y(θ, t) = ε

λ
Z(θ, t) (18)

and so (compare with (9), (10))

Y(θ, t) = 1

2
(V0+U0)e

λt + 1

2
(V0−U0)e

−λt .

We shall shortly describe how to perform the pre- and post-processing in physical space.
For Scheme II the amplitude is exact and the entire error is due to the phase error. In a

more general context one can construct schemes for which the numerical phase has a higher
degree of accuracy than the amplitude [6]. For a dissipative scheme, e.g., using upwind
methods, both the amplitudes and phases will have errors.

We have performed this adjustment of the initial and final data for the general system of
two equations. We now demonstrate this explicitly for the above examples and show how
to perform the pre- and post-processing in physical space. For Scheme II we have

ε = 1− e−i θ

1x
, µ = ei θ − 1

1x
, λ2 = − 4 sin2(θ/2)

(1x)2
=
(

2i sin(θ/2)

1x

)2

.

As we have previously seenε
λ
= 1+O(h) and soA andB are first order accurate butλ

is second order accurate. The pre-processing stage involves

V0 = ε

λ
Z0⇒ λV0 = εZ0 (19)

or in physical space at timet = 0,

v j+1/2(0)− v j−1/2(0) = zj (0)− zj−1(0).

By inspection this implieszj (0)= v j+1/2(0). As previously noted we have pre-processedv

to getu to the correct order. In order to findv to second order we need to post-process the
solution and so we need to translate (18) into physical space. At timet we calculatey from
z (y andz are the back Fourier transforms ofY andZ) via

yj+1/2(t)− yj−1/2(t) = zj (t)− zj−1(t)

or yj+1/2(t)= zj (t).
Therefore, to fix Scheme II we merely shiftv by half a cell width for both the initial

condition and the final evaluation. By linearity it is sufficient to only change these two time
levels. Hence, we rederive mathematically what we previously observed intuitively.

We now consider the harder case of Schemes III and IV where the amplitude error reduces
from fourth order accurate to first order accuracy. Now

ε = 2i sin(θ/2)

1x(γei θ + 1− γ ) , µ = 2i sin(θ/2)

1x(γe−i θ + 1− γ )

λ2 = − 4 sin2(θ/2)

(1x)2(1− 2β sin2(θ/2))
.
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Note thatλ is not the symbol of a finite difference operator. As beforeγ andβ are first
order accurate. We correct this by pre-processing

V0 = ε

λ
Z0⇒ λV0 = εZ0

or

2i sin(θ/2)√
(1− 2β sin2(θ/2))

V0 = 2i sin(θ/2)

(γei θ + 1− γ ) Z0.

Cancelling and clearing fractions we get

√(
1− 2β sin2

(
θ

2

))
Z0 = (γei θ + 1− γ )V0. (20)

Because of the square root that appears in this formula we can interpert (20) only as a
pseudo-difference equation in physical space. To overcome this difficulty we need to ap-
proximate the square root with fourth order accuracy by a Taylor series expansion or a Pade
approximation.

We first approximate the square root by a Taylor series to fourth order accuracy and get

(
1− β sin2

(
θ

2

)
+ β2 sin4

(
θ

2

))
V0 = (γei θ + 1− γ )Z0

or in physical space,v= v j (t)

v j (0)− β
2
(v j+1(0)− 2v j (0)+ v j+1(0))+ β

2

16
(v j+2(0)− 4v j+1(0)

+ 6v j (0)− 4v j−1(0)+ v j−2(0)) = γ zj+1(0)+ (1− γ )zj (0). (21)

This can be solved directly forzj at the initial time. When we reach the post-processing
stage, att = N1t , we havezN

j anduN
j =wN

j at all the grid points and need to calculateyN
j .

Repeating the argument leading to (20) and (21) we obtain

yj (t)− β
2
(yj+1(t)− 2yj (t)+ yj+1(t))+ β

2

16
(yj+2(t)− 4yj+1(t)

+ 6yj (t)− 4yj−1(t)+ yj−2(t)) = γ zj+1(t)+ (1− γ )zj (t). (22)

However, since now we need to solve foryN
j in terms ofzN

j , we need to invert a pentadiagonal
matrix. Since this is done only whenever the solution is needed the additional cost is not
very large. A better way is to replace the square root in (20) by a Pade approximation to
fourth order rather than a Taylor Series. We can then use either a tridiagonal solver or even
give y explicitly in terms ofz with fourth order accuracy depending on the numerator of the
Pade approximation. In either case we have now pre- and post-processed the approximation
so that both the amplitude and the phase are fourth order accurate.
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4. TWO DIMENSIONS

In two dimensions we generalize (1) to a system that is equivalent to the wave equation,
namely

pt = qx + r y

qt = px

rt = py.

(23)

We denote the Fourier transform ofp,q, r by P, Q, R with Fourier variableskx, ky. As
before we introduce a numerical scheme and Fourier transform it. We denote the Fourier
transform of the numerical quantities byU,V,W. Then we write the Fourier transform of
the numerical scheme in the abstract form

Ut = εxV + εyW

Vt = µxU

Wt = µyU,

(24)

where, as before, theε’s andµ’s are symbols of first difference operators. Defineλ2
x = εxµx,

λ2
y= εyµy, λ

2= λ2
x + λ2

y, andσ 2=−(k2
x + k2

y). Then

Ptt = σ 2(Pxx + Pyy), Utt = λ2(Uxx +Uyy). (25)

We shall assume that all theε andµ are low order approximations to the appropriatekx, ky.
However,λx is a high order approximation toikx and similarly in they direction. The
solutions of (23) and (24) are given by

P = Aeeσ t + Bee−σ t , U = Aeλt + Be−λt

Ae = 1

2

(
P0+ ikx

σ
Q0+ iky

σ
R0

)
, A = 1

2

(
U0− εx

λ
V0+ εy

λ
W0

)
Be = 1

2

(
P0− ikx Q0− iky R0

)
, B = 1

2

(
U0− εxV0+ εyW0

)
.

(26)

For the other variables we have

Q = ikx

σ

[
Ae(e

σ t − 1)− Be(e
−σ t − 1)

]+ Q0

R = iky

σ

[
Ae(e

σ t − 1)− Be(e
−σ t − 1)

]+ R0

and

V = µx

λ
[ A(eλt − 1)− B(e−λt − 1)] + V0

W = µy

λ
[ A(eλt − 1)− B(e−λt − 1)] +W0.
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Comparing the solutions forP andU we need to choose, for givenQ0, R0 the initial
data(V0,W0) so that

i
kx Q0+ ky R0

σ
= εxV0+ εyW0

λ
. (27)

However,ikx, iky are symbols of the continuous operator and not useful for the discrete
problem. By assumption,ikx ∼ λx to the order of the scheme. One way to satisfy (27) to
fourth order accuracy is to require (compare with (19))

λx Q0 = εxV0, λy R0 = εyW0. (28)

We define(V,W) as the solution of (24) with the new initial conditions, (28). With this
choiceA∼ Ae, B∼ Be and soU ∼ P to the order of accuracy of the phase error. In order
to matchV,W with Q, R, to higher order, we must post-process(V,W) so that

εx

λx
V = λx

λ
[ A(eλt − 1)+ B(e−λt − 1)] + εx

λx
V0

(29)

∼ λx

λ
[ A(eλt − 1)+ B(e−λt − 1)] + Q0.

However, again recalling thatλ∼ σ andλx ∼ ikx to higher order, we haveεx
λx

V ∼ Q. Hence,
we introduce new variables which postprocess(U,V). These are given by

λxV̂ = εxV, λyŴ = εyW. (30)

By the above analysis we have shown thatV̂ approximatesQ andŴ approximatesR to
the higher order accuracy thatλ approximatesσ .

We conclude with the following:

• Without pre- or post-processing we have thatλ∼ σ to the order of the scheme.
Hence, the original scheme (24) with the initial conditionsP0, Q0, R0 yields a solution
with the proper higher order phase error.
• In order to also obtain the amplitude to the correct order of accuracy we need to only

pre-process the initial conditions and post-process the numerical solution forV andW but
notU . For linear problems we only need post-process at the conclusion of the computation
not after each time step. This pre- and post-processing recovers the full accuracy of the
scheme.
• The symbolsε, µ, λmay not correspond to any finite difference operator. Therefore,

to translate these conditions into physical space we may need to approximate these symbols
by a Taylor series expansion or a Pade approximation as one done in one dimension.

5. CONCLUSION

We have shown that Schemes II and IV have the same phase error as Schemes I and III,
respectively, and so the phase is higher order accurate. However, the change from central
differences to one sided differences reduces the amplitudes to first order accuracy. We traced
this seeming paradox to the treatment of the initial data. We have further shown that one can
recover the higher order accuracy of the scheme by pre- and post-processing the data. In
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some cases this processing leads to Fourier symbols that can no longer be simply related to
finite difference formulas in physical space. In these cases it is necessary to approximate the
symbols by a Taylor series expansion or a Pade approximation to the order of the schemes.
Then the total scheme in physical space has the desired order.
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